Recent Post :

Kelarutan sebagai fungsi Temperatur



Larutan

Larutan merupakan campuran homogen dari molekul, atom, atau ion dari dua zat atau lebih. Suatu larutan dikatakan homogeny karena susunanya begitu seragamsehingga tidak dapat diamati adanya bagian bagian yang berlainan. Sedangkancampuran atau larutan heterogen susunan fasa fasanya terpisah. Zat terlarut adalahsuatu zat penyusun larutan yang jumlahnya sedikit dibandingkan pelarutLarutan jenuh adalah larutan yang telah mengandung zat terlarut melebihikonsentrasi maksimum (tidak dapat ditambah lagi). Larutan lewat
jenuh (endapan)adalah larutan yang mengandung zat terlarut melebihi konsentrasi maksimumyang akhirnya mengendap (dimana akan terjadi endapan pada larutan) Faktor faktor yang mempengaruhi kelarutan :

1.Temperatur 
Pada saat temperatur ditingkatkan, jumlah zat padat yang bias melarutmeningkat. Sedangkan gas berlaku sebaliknya. Saat temperature dinaikkan,jumlah gas yang bias melarut menurun. Hal ini bias menjelaskan kenapa ikanbias hidup di danau yang airnya memiliki temperatur yang rendah, karenasemakin dingin air tersebut, maka oksigen terlarut semakin banyak.

2.Tekanan
Untuk gas, kelarutan seluruh gas dalam cairan meningkat denganmeingkatnya temperature. Jika tekanan gas yang berada diatas larutan lebihtinggi dari tekanan dalam larutan tersebut, maka akan lebih banyak jumlahgas yang dapat melarut dalam larutan tersebur. Tekanan tidak terlaluberpengaruh pada kelarutan dan cairan 

3.Likes dissolve likes
   Istilah ini digunakan untuk membantu mengingat bagaimana zat terlarut danpelarutnya berinteraksi. Ini menunjukan jenis ikatan zat terlarut dan pelarut.Zat terlarut ionik larut dalam pelarut ionik, dan zat terlarut kovalen larutdalam pelarut kovalen. Gasoline merupakan kovalen non polar dan tidak tercampur dengan baik dengan air (pelarut yang sangat polar). Dari sinilahkita bisa mengatakan bahwa minyak dan air itu tidak bisa bercampur Faktor factor yang mempengaruhi jumlah zat terlarut yang akan melarut :

1.Pelarutan padatan dalam cairan
   Meningkatnya temperature akan meningkatkan kelarutan

2.Pelarutan gas dalam cairan
  -Besarnya tekanan akan meningkatkan kelarutan
  -Besarnya temperatur akan menurunkan kelarutan


Pengukuran kelarutan dinyatakan dalam gram zat terlarut per 100 grampelarut pada temperature yang diberikan. Untuk menunjukan kelarutan suatu zatterlarut dalam sebagian pelarut pada temperature yang berbeda beda dinyatakandalam kurva kelarutan. Pada kurva ini bias terdapat banyak zat terlarut yangberbeda beda. Ingat bahwa ketika temperatur meningkat, jumlah zat terlarut akanmenurun sehingga grafiknya akan membentuk kurva miring kekiri.
Pada larutan jenuh terjadi keseimbangan antara zat terlarut dalam larutandan zat yang tidak terlarut. Dalam keseimbangan ini kecepatan melarut samadengan kecepatan mengendap yang berarti konsentrasi zat dalam larutan akanselalu tetap. Proses keseimbangan ini akan bergeser apabila dilakukan perubahanyang dikenakan pada system tersebut.

Jika keseimbangan diganggu, misalnya dengan merubah temperature,maka konsentrasi larutannya akan beubah. Menurut Vant Hoff pengaruhtemperature terhadap kelarutan dapat dinyatakan sebagai berikut : 
          d ln s / dt    =H/Rt"
Persamaan ini merupakan expresi secara sistematis azas Le Chatelier. Jikapersamaan ini diintegralkan dari T1 ke T2, maka akan menghasilkan :

Ln s    = -H/R x 1/ T+ C
S1, S2  =  Kelarutan zat pada temperature  T1 dan T2 (mol/100 gram solvent)H  =  Panas pelarutan permol selR  =  Konstanta umum gasC  =  Konstanta integrasiPanas pelarutan ini adalah panas yang diserap jika 1 mol padatandilarutkan dalam larutan yang sudah dalam keadaan jenuh. Hal ini berbeda denganpanas pelarutan untuk larutan encer yang biasa terdapat dalam table panaspelarutan. Panas pelarutan biasanya terdapat dalam table merupakan panaspengenceran dari keadaan jenuh menjadi encer Pada umumnya panas pelarutan bernilai positif, sehingga menurut VantHoff kenaikan temperature akan meningkatkan jumlah zat yang terlarut. Begitusebaliknya
Secara kuantitatif,kelarutan suatu zat dinyatakan sebagai suatu konsentrasi zat terlarut di dalam larutan jenuhnya pada suhu dan tekanan tertentu. Kelarutan dinyatakan dalam satuan mililiter pelarut yang dapat melarutkan satu gram zat. Misalnya 1 gr asam salisilat akan larut dalam 550 ml air. Suatu kelarutan juga dapat dinyatakan dalam satuan molalitas, molaritas dan persen.

Pelepasan zat aktif dari suatu bentuk sediaannya sangat dipengaruhi oleh sifat-sifat kimia dan fisika zat tersebut serta formulasinya.

Disamping itu. Selain faktor-faktor diatas terdapat juga  faktor-faktor lain  yang dapat mempengaruhi kelarutan suatu zat antara lain :

- pH
- temperature
- jenis pelarut
- bentuk dan ukuran partikel zat
- konstanta dielektrik pelarut
- adanya zat-zat lain, misalnya surfaktan pembentuk kompleks, ion sejenis dll.

1. Pengaruh pH
Zat aktif yang sering digunakan di dalam dunia pengobatan umumnya adalah Zat organik yang bersifat asam lemah, dimana kelarutannya sangat dipengaruhi oleh pH pelarutnya. Kelarutan asam-asam organik lemah seperti barbiturat dan sulfonamida dalam air akan bertambah dengan naiknya pH karena terbentuk garam yang mudah larut dalam air. Sedangkan basa-basa organik lemah seperti alkoholida dan anastetika lokal pada umumnya sukar larut dalam air. Bila pH larutan diturunkan dengan penambahan asam kuat maka akan terbentuk garam yang mudah larut dalam air.

Hubungan antara pH dengan kelarutan asam dan basa lemah digambarkan oleh persamaan sebagai berikut
Untuk asam lemah :
pHp = pKw + log S-So/So
Untuk basa lemah :
pHp = pKw - pKb + log S – So/So
Keterangan :
pHp = harga pH terendah/tertinggi dimana zat yang berbentuk asam atau basa lemah masih dapat larut.
S = Konsentrasi molar zat dalam yang ditambahkan
So = Kelarutan molar fraksi asam atau basa yang tidak terdisosiasi
2. Pengaruh temperatur (suhu)

Kelarutan zat padat dalam larutan ideal tergantung kepada temperatur, titik leleh zat padat dan panas peleburan molar zat tersebut. Kelarutan suatu zat padat dalam air akan semakin tinggi bila suhunya dinaikan. Adanya panas (kalor) mengakibatkan semakin renggangnya jarak antar molekul zat padat tersebut. Merenggangnya jarak antar molekul zat padat menjadikan kekuatan gaya antar molekul tersebut menjadi lemah sehingga mudah terlepas oleh gaya tarik molekul-molekul air. Berbeda dengan zat padat, adannya pengaruh kenaikan suhu akan menyebabkan kelarutan gas dalam air berkurang. Hal ini disebabkan karena gas yang terlarut di dalam air akan terlepas meninggalkan air bila suhu meningkat.



3. Pengaruh jenis pelarut
Kelarutan suatu zat sangat dipengaruhi oleh polaritas pelarut. Pelarut polar akan melarutkan lebih baik zat-zat polar dan ionik, begitu pula sebaliknya. Kelarutan juga bergantung pada struktur zat, seperti perbandingan gugus polar dan non polar dari suatu molekul. Makin panjang rantai gugus non polar suatu zat, makin sukar zat tersebut larut dalam air. Menurut Hilderbrane : kemampuan zat terlarut untuk membentuk ikatan hidrogen lebih pentig dari pada kemolaran suatu zat. Senyawa polar (mempunyai kutub muatan) akan mudah larut dalam senyawa polar. Misalnya gula, NaCl, alkohol, dan semua asam merupakan senyawa polar sehingga mudah larut dalam air yang juga merupakan senyawa polar.

Sedangkan senyawa nonpolar akan mudah larut dalam senyawa nonpolar, misalnya lemak mudah larut dalam minyak. Senyawa nonpolar umumnya tidak larut dalam senyawa polar, misalnya NaCl tidak larut dalam minyak tanah.

Pelarut polar bertindak sebagai pelarut dengan mekanisme sebagai berikut :

- Mengurangi gaya tarik antara ion yang berlawanan dalam Kristal.
- Memecah ikatan kovalen elektrolit-elektrolit kuat, karena pelarut ini bersifat amfiprotik.
- Membentuk ikatan hidrogen dengan zat terlarut.

Pelarut non polar tidak dapat mengurangi daya tarik-menarik antara ion-ion karena konstanta dielektiknya yang rendah. Iapun tidak dapat memecahkan ikatan kovalen dan tidak dapat membentuk jembatan hidrogen. Pelarut ini dapat melarutkan zat-zat non polar dengan tekanan internal yang sama melalui induksi antara aksi dipol. Pelarut semi polar dapat menginduksi tingkat kepolaran molekul-molekul pelarut non polar. Ia bertindak sebagai perantara (Intermediete Solvent) untuk mencampurkan pelarut non polar dengan non polar.

4. Pengaruh bentuk dan ukuran partikel
Kelarutan suatu zat akan naik dengan berkurangnya ukuran partikel suatu zat, sesuai dengan persamaan berikut :
Log S/So = 2 v/2,303 RTr
Keterangan :
 S = kelarutan dari partikel halus
So = kelarutan zat padat yang ukuran partikelnya lebih besar
 r = Tegangan permukaan partikel zat padat
 v = volume partikel dalam cm2 per mol
R = jari-jari akhir partikel dalam cm2
T = temperatur absolute

Konfigurasi molekul dan bentuk susunan kristal juga berpengaruh terhadap kelarutan zat. Partikel yang bentuknya tidak simetris lebih mudah larut bila dibandingkan dengan partikel yang bentuknya  simetris.

5. Pengaruh konstanta dielektrik
Kelarutan suatu zat sangat dipengaruhi oleh polaritas pelarut. Pelarut polar mempunyai konstanta dielektrik yang tinggi dapat melarutkan zat-zat non polar sukar larut di dalamnya, begitu pula sebaliknya. Besarnya tetapan dielektrik ini menurut moore dapat diatur dengan penambahan pelarut lain. Tetapan dielektrik suatu campuran pelarut merupakan hasil penjumlahan dari tetapan dielektrik masing-masing yang sudah dikalikan dengan % volume masing-masing komponen pelarut.

Adakalanya suatu zat lebih mudah larut dalam pelarut campuran dibandingkan pelarut tunggalny. Fenomena ini dikenal dengan istilah co-solvency dan pelarut yang mana dalam bentuk campuran dapat menaikkan kelarutan suatu zat diseut co-solvent. Etanol, gliserin dan propilen glikol adalah co-solvent yang umum digunakan dalam bidang farmasi untuk pembuatan eliksir.

6. Pengaruh penambahan zat-zat lain
Surfaktan adalah suatu zat yang sering digunakan untuk menaikan kelarutan suatu zat. Molekul surfaktan terdiri atas dua bagian yaitu bagian polar dan non polar.apabila didispersikan dalam air pada konsentrasi yang rendah, akan berkumpul pada permukaan dengan mengorientasikan bagian polar ke arah air dan bagian non polar kearah udara, surfaktan mempunyai kecenderungan berasosiasi membentuk agregat yang dikenal sebagai misel. Konsentrasi pada saat misel mulai terbentuk disebut konsentrasi misel kritik

Kesetimbangan kelarutan
Kesetimbangan kelarutan terkait dengan peristiwa pelarutan sebuah zat. Misalnya kita melarutkan garam ke dalam sebuah gelas yang berisi air, pertama kita tambah 1 gram garam, dimasukan dan diaduk dan garam larut. Jika kita tambahkan terus menerus, garam tidak larut lagi dan kita katakan larutan lewat jenuh.
Berkaitan dengan kelarutan terdapat tiga keadaan yang dapat kita temui yaitu Larutan tidak jenuh, larutan tepat jenuh dan larutan lewat jenuh.
Pada saat pertama zat padat yang kita tambahkan ke dalam pelarut akan mudah larut.
Larutan tepat jenuh adalah keadaan kesetimbangan dimana jika terjadi penambahan zat terlarut maka terjadi pengendapan, demikian pula jika kita tambahkan sedikit saja pelarut maka zat-zat dengan mudah melarut. Pada keadaan ketiga terjadi pengendapan atau zat tidak larut jika kita tambahkan. Ketiga kondisi ini disederhanakan pada Gambar 9.13.
Gambar 9.13. Keadaan dalam proses pelarutan zat
Keadaan ini dapat kita tuliskan, misalnya larutan garam dalam air akan terionisasi,
LA L+ + A-
Dalam keadaan kesetimbangan berlaku,
Ksp (Hasil kali kelarutan) adalah hasil kali konsentrasi ion-ion dalam larutan tepat jenuh dan tiap konsentrasinya dipangkatkan dengan koofisien reaksinya. Variable [L+] dan [A-] adalah konsentrasi ion dalam adalah mol/L
Untuk reaksi garam yang lebih kompleks, misalnya
LA a L+ + b A-
Maka persamaan untuk Ksp-nya adalah :
jika Ksp > [L+]a . [A-]b ; larutan tidak jenuh
jika Ksp = [L+]a . [A-]b; larutan tepat jenuh
jika Ksp < [L+]a . [A-]b ; larutan lewat jenuh
Perhatikan Gambar 9.13.
Sampai di sini, yang telah dibahas adalah, cairan satu komponen, yakni cairan murni. Fasa cair yang berupa sistem dua atau multi komponen, yakni larutan juga sangat penting. Larutan terdiri atas cairan yang melarutkan zat (pelarut) dan zat yang larut di dalamnya (zat terlarut). Pelarut tidak harus cairan, tetapi dapat berupa padatan atau gas asal dapat melarutkan zat lain. Sistem semacam ini disebut sistem dispersi. Untuk sistem dispersi, zat yang berfungsi seperti pelarut disebut medium pendispersi, sementara zat yang berperan seperti zat terlarut disebut dengan zat terdispersi (dispersoid).
Baik pada larutan ataupun sistem dispersi, zat terlarut dapat berupa padatan, cairan atau gas. Bahkan bila zat terlarut adalah cairan, tidak ada kesulitan dalam membedakan peran pelarut dan zat terlarut bila kuantitas zat terlarut lebih kecul dari pelarut. Namun, bila kuantitas zat terlarut dan pelarut, sukar untuk memutuskan manakah pelarut mana zat terlarut. Dalam kasus yang terakhir ini, Anda dapat sebut komponen 1, komponen 2, dst.
a. Konsentrasi
Konsentrasi larutan didefinisikan dengan salah satu dari ungkapan berikut:
Ungkapan konsentrasi
  1. persen massa (%) =(massa zat terlarut/ massa larutan) x 100
  2. molaritas (konsentrasi molar) (mol dm-3) =(mol zat terlarut)/(liter larutan)
  3. molalitas (mol kg-1) =(mol zat teralrut)/(kg pelarut)
Contoh soal
Hitung jumlah perak nitrat AgNO3 yang diperlukan untuk membuat 0,500 dm3 larutan 0,150 mol.dm-3, asumsikan massa molar AgNO3 adalah 170 g mol-1.
Jawab
Bila jumlah perak nitrat yang diperlukan x g, x = [170 g mol-1 x 0,500 (dm3) x 0,150 (mol dm-3)]/[1 (dm3) x 1 (dm3)]
x = 12,8 mg.
b. Tekanan uap
Tekanan uap cairan adalah salah satu sifat penting larutan. Tekanan uap larutan juga penting dan bermanfaat untuk mengidentifikasi larutan. Dalam hal sistem biner, bila komponennya mirip ukuran molekul dan kepolarannya, misalnya benzen dan toluen, tekanan uap larutan dapat diprediksi dari tekanan uap komponennya. Hal ini karena sifat tekanan uap yang aditif. Bila larutan komponen A dan komponen B dengan fraksi mol masing-masing adalah xA dan xB berada dala kesetimbangan dengan fasa gasnya tekanan uap masing-masing komponen sebanding dengan fraksi molnya dalam larutan. Tekanan uap komponen A, pA,diungkapkan sebagai:
pA = pA0 xA … (7.2)
pA0 adalah tekanan uap cairan A murni pada suhu yang sama. Hubungan yang mirip juga berlaku bagi tekanan uap B, pB. Hubungan ini ditemukan oleh kimiawan Perancis Francois Marie Raoult (1830-1901) dan disebut dengan hukum Raoult. Untuk larutan yang mengikuti hukum Raoult, interaksi antara molekul individual kedua komponen sama dengan interaksi antara molekul dalam tiap komponen. Larutan semacam ini disebut larutan ideal. Gambar 7.6 menunjukkan tekanan uap larutan ideal sebagai fungsi konsentrasi zat teralrut. Tekanan total campuran gas adalah jumlah pA dan pB, masing-masing sesuai dengan hukum Raoult.
Gambar 7.6 Tekanan total dan parsial larutan ideal.
Contoh soal 7.3
Tekanan uap cairan A dan B adalah 15 Torr dan 40 Torr pada 25°C. tentukan tekanan uap larutan ideal yang terdiri atas 1 mol A dan 5 mol of B.
Jawab
pA = pA0 xA = 15 x (1/6) = 2,5 Torr
pB = pB0 xB = 40 x (5/6) = 33,3 Torr P = pA + pB = 35,8 Torr
c. Larutan ideal dan nyata
Sebagaimana juga perilaku gas nyata berbeda dengan perilaku gas ideal, perilaku larutan nyata berebeda dengan perilaku larutan ideal, dengan kata lain berbeda dari hukum Raoult. Gambar 7.7(a) menunjukkan kurva tekanan uap sistem biner dua cairan yang cukup berbeda polaritasnya, aseton Me2CO dan karbon disulfida CS2. Dalam hal ini, penyimpangan positif dari hukum Raoult (tekanan uap lebih besar) diamati. Gambar 7.7(b) menunjukkan tekanan uap sistem biner aseton dan khloroform CHCl3. Dalam kasus ini, penyimpangan negatif dari hukum Raoult diamati. Garis putus-putus menunjukkan perilaku larutan ideal. Peilaku larutan mendekati ideal bila fraksi mol komponen mendekati 0 atau 1. Dengan menjauhnya fraksi mol dari 0 atau 1, penyimpangan dari ideal menjadi lebih besar, dan kurva tekanan uap akan mencapai minimum atau maksimum.
Gambar 7.7 Tekanan total dan parsial larutan nyata (25°C).
Penyebab penyimpangan dari perilaku ideal sebagian besar disebabkan oleh besarnya interaksi molekul. Bila pencampuran komponen A dan B menyebabkan absorpsi kalor dari lingkungan (endoterm), interaksi molekul antara dua komponen lebih kecil daripada pada masing-masing komponen, dan penyimpangan positif dari hukum Raoult akan terjadi. Sebaliknya, bila pencampuran menghasilkan kalor ke lingkungan (eksoterm), penyimpangan negatif akan terjadi.
Bila ikatan hidrogen terbentuk antara komponen A dan komponen B, kecenderungan salah satu komponen untuk meninggalkan larutan (menguap) diperlemah, dan penyimpangan negatif dari hukum Raoult akan diamati. Kesimpulannya, penyebab penyimpangan dari hukum Raoult sama dengan penyebab penyimpangan dari hukum gas ideal.
d. Kenaikan titik didih dan penurunan titik beku
Bila dibandingkan tekanan uap larutan pada suhu yang sama lebih rendah dari tekanan uap pelarutnya. Jadi, titik didih normal larutan, yakni suhu saat fasa gas pelarut mencapai 1 atm, harus lebih tinggi daripada titik didih pelarut. Fenomena ini disebut dengan kenaikan titik didih larutan.
Dengan menerapkan hukum Raoult pada larutan ideal, kita dapat memperoleh hubungan berikut:
pA = pA0 xA = pA0 [nA /(nA + nB)] …. (7.3)
(pA0- pA)/ pA0 = 1 – xA = xB … (7.4)
xA dan xB adalah fraksi mol, dan nA dan nB adalah jumlah mol tiap komponen. Persamaan ini menunjukkan bahwa, untuk larutan ideal dengan zat terlarut tidak mudah menguap, penurunan tekanan uap sebanding dengan fraksi mol zat terlarut.
Untuk larutan encer, yakni nA + nB hampir sama dengan nA, jumlah mol nB dan massa pada konsentrasi molal mB diberikan dalam ungkapan.
xB = nB/(nA + nB) = nB/nA= nB/(1/MA) = MAmB … (7.5)
MA adalah massa molar pelarut A. Untuk larutan encer, penurunan tekanan uap sebanding dengan mB, massa konsentrasi molal zat terlarut B.
Perbedaan titik didih larutan dan pelarut disebut dengan kenaikan titik didih, http://www.chem-is-try.org/wp-content/migrated_images/pengantar/delta.gifTb. Untuk larutan encer, kenaikan titik didih sebanding dengan massa konsentrasi molal zat terlarut B.
http://www.chem-is-try.org/wp-content/migrated_images/pengantar/delta.gifTb = Kb mB … (7.6)
Tetapan kesebandingan Kb khas untuk setiap pelarut dan disebut dengan kenaikan titik didih molal.
Hubungan yang mirip juga berlaku bila larutan ideal didinginkan sampai membeku. Titik beku larutan lebih rendah dari titik beku pelarut. Perbedaan antara titik beku larutan dan pelarut disebut penurunan titik beku, http://www.chem-is-try.org/wp-content/migrated_images/pengantar/delta.gifTf. Untuk larutan encer penurunan titik beku akan sebanding dengan konsentrasi molal zat terlarut mB
http://www.chem-is-try.org/wp-content/migrated_images/pengantar/delta.gifTf = Kf mB … (7.7)
Tetapan kesebandingannya Kb khas untuk tiap pelarut dan disebut dengan penurunan titik beku molal.
Tabel 7.3 Kenaikan titik didih dan penurunan titik beku molal.
pelarut
titik didih (°C)
Kb
pelarut
titik beku (°C)
Kf
CS2
46
2.40
H2O
0
1.86
aseton 55,9
1,69
benzen
5,1
5,07

benzen
79,8
2,54
asam asetat
16,3
3,9
H2O
100
0,51
kamfer
180
40
Di Tabel 7.3 beberapa nilai umum kenaikan titik didih dan penurunan titik beku molal diberikan. Dengan menggunakan nilai ini dan persamaan 7.6 dan 7.7 dimungkinkan untuk menentukan massa molar zat terlarut yang belum diketahui. Kini, penentuan massa molekul lebih mudah dilakukan dengan spektrometer massa. Sebelum spektrometer massa digunakan dengan rutin, massa molekul umumnya ditentukan dengan menggunakan kenaikan titik didih atau penurunan titik beku. Untuk kedua metoda, derajat kesalahan tertentu tak terhindarkan, dan keterampilan yang baik diperlukan agar didapatkan hasil yang akurat.
Contoh soal 7.4 Penentuan massa molekul dengan metoda penurunan titik beku.
Larutan dalam air terdiri atas 100 g H2O dan 5,12 g zat A (yang massa molekulnya tidak diketahui) membeku pada -0,280°C. Dengan menggunakan data di Tabel 7.3, tentukan massa molar A.
Jawab
Massa molar A andaikan M. Dengan menggunakan persamaan 7.7, M dapat ditentukan dengan
0,280 = Kf x (m/M) x (1/W) = 1,86 x (5,12/M) x (1/0,11)
M = 340 g mol-1.
e. Tekanan osmosis
Membran berpori yang dapat dilalui pelarut tetapi zat terlarut tidak dapat melaluinya disebut dengan membran semipermeabel. Bila dua jenis larutan dipisahkan denga membran semipermeabel, pelarut akan bergerak dari sisi konsentrasi rendah ke sisi konsentrasi tinggi melalui membran. Fenomena ini disebut osmosis. Membran sel adalah contoh khas membran semipermeabel. Membran semipermeabel buatan juga tersedia.
Bila larutan dan pelarut dipisahkan membran semipermeabel, diperlukan tekanan yang cukup besar agar pelarut bergerak dari larutan ke pelarut. Tekanan ini disebut dengan tekanan osmosis. Tekanan osmosis larutan 22,4 dm3 pelarut dan 1 mol zat terlarut pada 0 °C adalah 1,1 x 105 N m2.
Hubungan antara konsentrasi dan tekanan osmoisi diberikan oleh hukum van’t Hoff’s.
πV = nRT … (7.8)
π adalah tekanan osmosis, V volume, T temperatur absolut, n jumlah zat (mol) dan R gas. Anda dapat melihat kemiripan formal antara persamaan ini dan persamaan keadaan gas. Sebagaimana kasus dalam persamaan gas, dimungkinkan menentukan massa molekular zat terlarut dari hubungan ini.
Contoh soal 7.5 hukum van’t Hoff
Tekanan osmosis larutan 60,0 g zat A dalam 1,00 dm3 air adalah 4,31 x 105 Nm–2. Tentukan massa molekul A.
Jawab
Dengan menggunakan hubungan πV = nRT
4,31 x 105 (N m-2) x 1,00 x 10-3 (m3) = [60,0 (g) x 8,314 (J mol-1 K-1) x 298 (K)]/M (g mol–1)
M = 345 (g mol-1)
f. Viskositas
Gaya tarik menarik antarmolekul yang besar dalam cairan menghasilkan viskositas yang tinggi. Koefisien viskositas didefinisikan sebagai hambatan pada aliran cairan. Gas juga memiliki viskositas, tetapi nilainya sangat kecil. Dalam kasus tertentu viskositas gas memiliki peran penting, misalnya dalam peawat terbang.
Viskositas
  1. Viskositas cairan yang partikelnya besar dan berbentuk tak teratur lebih tinggo daripada yang partikelnya kecil dan bentuknya teratur.
  2. Semakin tinggi suhu cairan, semakin kecil viskositasnya.
Dua poin ini dapat dijelaskan dengan teori kinetik. Tumbukan antara partikel yang berbentuk bola atau dekat dengan bentuk bola adalah tumbukan elastik atau hampir elastik. Namun, tumbukan antara partikel yang bentuknya tidak beraturan cenderung tidak elastik. Dalam tumbukan tidak elastik, sebagian energi translasi diubah menjadi energi vibrasi, dan akibatnya partikel menjadi lebih sukar bergerak dan cenderung berkoagulasi. Efek suhu mirip dengan efek suhu pada gas.
Koefisien viskositas juga kadang secara singkat disebut dengan viskositas dan diungkapkan dalam N s m-2 dalam satuan SI. Bila sebuah bola berjari-jari r bergerak dalam cairan dengan viskositas ηdengan kecepatan U, hambatan D terhadap bola tadi diungkapkan sebagai.
D = 6πhrU … (7.9)
Hubungan ini (hukum Stokes) ditemukan oleh fisikawan Inggris Gabriel Stokes (1819-1903).

g. Tegangan permukaan

Tegangan permukaan juga merupakan sifat fisik yang berhubungan dengan gaya antarmolekul dalam cairan dan didefinisikan sebagai hambatan peningkatan luas permukaan cairan. Awalnya tegangan permukaan didefinisikan pada antarmuka cairan dan gas. Namun, tegangan yang mirip juga ada pada antarmuka cairan-cairan, atau padatan dan gas. Tegangan semacam ini secara umum disebut dengan tegangan antarmuka. Tarikan antarmolekul dalam dua fas dan tegangan permukaan di antarmuka antara dua jenis partikel ini akan menurun bila tempeartur menurun. Tegangan antarmuka juga bergantung pada struktur zat yang terlibat. Molekul dalam cairan ditarik oleh molekul di sekitarnya secara homogen ke segala arah. Namun, molekul di permukaan hanya ditarik ke dalam oleh molekul yang di dalam dan dengan demikian luas permukaan cenderung berkurang. Inilah asal mula teori tegangan permukaan. Bentuk tetesan keringat maupun tetesan merkuri adalah akibat adanya tegangan permukaan.
Cairan naik dalam kapiler, fenomena kapiler, juga merupakan fenomena terkenal akibat adanya tegangan permukaan. Semakin besar tarikan antar molekul cairan dan kapilernya, semakin besar daya basah cairan. Bila gaya gravitasi pada cairan yang naik dan tarikan antara cairan dan dinding kapiler menjadi berimbang, kenaikan akan terhenti. Tegangan permukaan γ diungkapkan sebagai.
γ = rhdg/2 …. (7.10)
h adalah tinggi kenaikan cairan, r radius kapiler dan g percepatan gravitasi. Jadi, tegangan permukaan dapat ditentukan dengan percobaan.

Share this Article on :

1 komentar:

Ringo mengatakan...
Komentar ini telah dihapus oleh penulis.
 
© Copyright Ringo Blogs 2012 | Design by Josven Ringo | Published by Ringo BLogs | Powered by Blogger.com.